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Abstract-In this work a unified strategy for identification of material parameters of visco-
plastic constitutive equations from uniaxial test data is presented. Gradient-based descent methods
(e.g. Gauss-Newton method, Quasi-Newton method) are used for minimization of a least-
squares functional, thus requiring the associative gradient. The corresponding sensitivity analysis
is explained in detail, where as a main result a recursion formula is obtained. Furthermore, the
stability of the numerical results for the material parameters is investigated by use of the eigen-
values for the Hessian of the least-squares functional. Numerical examples are presented in the
context of monotonic and cyclic loading. In particular, comparative results with a genetic
algorithm reflect the efficiency of our strategy with respect to execution time, and we study the
effect of perturbations of the experimental data on the stability of the parameters. In one example
we demonstrate how possible instabilities can be circumvented by a regularization of the basic
least-squares functional. Copyright © 1966 Elsevier Science Ltd

I. INTRODUCTION

The design of engineering structures - e.g. in the context of the finite element method
- requires mathematical models capable of accurately predicting short-term and
long-term deformations and stresses due to mechanical and thermal loading. In general,
these models are given as a set of differential equations that consider transient and
steady-state creep, cyclic hardening and softening, Bauschinger effect, rate effects,
temperature effects, isotropic and discontinuous damage development, etc. Apart from
different quantities such as stresses, temperatures, internal variables, etc., they also depend
on material parameters, thus characterizing the specific material. In general, identifica-
tion of these parameters, which in mathematical terminology is an inverse problem, is
based on experimental data. The loading program in the experiment is characterized
by controlled strains or strain rates, controlled stresses or stress rates or a combina-
tion of these, respectively.

In some cases identification of parameters becomes very simple. Considering
Nortons law £ = (ol/K)N, the two coefficients K and N can be obtained from the graph
ln(o-) versus ln(£ ) by hand fitting of the results of secondary creep (see e.g. Lemaitre
and Chaboche [1990], p. 284). For more complex situations it is possible to extend
this mechanistic approach in a systematic manner. Basically, this strategy involves (I)
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physical and phenomenological interpretations of the constants in relation to standard
uniaxial, ideal tests; (2) distinguishing between different effects, such as kinematic
hardening, recovery and damage effects separately in the experimental data; (3) certain
ad hoc assumptions (e.g. neglecting elastic parts of strains); (4) evaluating the parameters
in a sequential manner. Here the data from one test are used to evaluate one or two
parameters and these parameters are then used as input, along with data from other tests
to evaluate more parameters. In this way a method is proposed by Huang and Khan
[1992] to determine the parameters of the model of Bodner and Partom 11975] based
on different stress-strain curves. Furthermore, Krieg et al. [1987] evaluated parameters
based on certain strain- and stress-controlled experiments for a set of constitu-
tive equations involving kinematic and isotropic hardening. Here, the critical ad
hoc assumption is made that in a stress relaxation test a constant back stress is
assumed.

Following Senseny et al. 11993] the above mechanistic approach suffers from the
following drawbacks:

* The ideal test conditions often cannot be realized in the laboratory, e.g. instanta-
neous change in inelastic strain rate (see also Huang and Khan [1992]).

* As a consequence of the parameters being evaluated sequentially, values of
parameters may depend upon the order in which they were determined.

* The associative ad hoc assumptions may be unrealistic.

In this paper we will consider parameter identification as an optimization problem,
which allows for a simultaneous determination of the parameters. The corresponding
objective function, basically, is of least-squares type, thus minimizing the discrepancies
between measured quantities and computed quantities.

Concerning the choice of the optimization strategy, very often a genetic algorithm
is preferred in practice because of its versatility; see, for example, Muller and
Hartmann [1989]; Kublik and Steck [1992]. However, as a major drawback the
method is very time-consuming, since in general many function evaluations (several
hundred thousand) are necessary. Thus, for reasons of efficiency, we will apply an
optimization strategy based on gradient evaluations. Furthermore, we will present a
unified strategy for analytical determination of the associative gradient of the least-
squares functional for a certain class of material models with internal variables.

Another object of this paper is to discuss and investigate the stability of the results
for the identification process, since instability is a typical feature of inverse problems
(see Baumeister [1987]; Morozow [1984]; Banks and Kunisch [1989]; Louis [1989]). To
this end two indicators are investigated: we examine the eigenvalues of the Hessian of
the least-squares functional and we study the effect of perturbation of the experimental
data on the parameters. Furthermore, for the case of numerically instable results we
introduce a regularization due to Tikhonov, which can be interpreted as an enhance-
ment of the basic least-squares functional by adequate model information.

This paper is organized as follows: In Section II we summarize some specific exam-
ples of constitutive models, i.e. the models due to Chaboche [1977], Bodner and
Partom [1975] and Steck [1985]. Then we give a brief formulation of the direct and the
inverse problem in stress-controlled one-dimensional viscoplasticity. In Sections III
and IV the discretized formulations of the direct problem and the inverse problem,
respectively, are presented. We discuss solution strategies based on linearization pro-
cedures where, in particular, a recursion formula is obtained for the inverse problem.
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Section V outlines the optimization strategies based on gradient evaluations. In partic-
ular we address some specific issues in the context of an algorithm due to Bertsekas
[1982], such as indefinite Hessians, Line-Search strategies, scaling and use of different
iteration matrices. In Section VI numerical results are performed in the context of
monotonic and cyclic uniaxial tension and compression tests. In particular we demon-
strate that numerical instabilities, or even nonuniqueness, for the identification process
may occur for the Chaboche model in the case of monotonic loading. Furthermore,
comparative results with a genetic algorithm demonstrate the efficiency of our strategy
with respect to execution time, and we will show how possible instabilities can be
circumvented by a regularization of the basic least-squares functional.

II. BASIC CONCEPTS

11.1 Mathematical modeling of uniaxial viscoplastic problems

In this section we describe the basic equations of one-dimensional viscoplastic con-
stitutive theory. Concerning its multiaxial formulation we refer to standard references
(see e.g. Miller [1987], Lemaitre and Chaboche [1990]). The theory in its present form
assumes small-order isothermal deformations (less than 5%). The strains - or the
strain rates, respectively - are decomposed additively into elastic and inelastic com-
ponents, of which the latter is taken to be volume preserving.

Let I [0, T] be the time interval of interest. The uniaxial stress is designated by
°- = o1 1I -e IR, while el and gin: I -e a?, are the elastic and inelastic parts of the small
strain tensor components ein and eql, respectively. Thus we have

£ + cin (l)

where

gel = , (2)

E
is the constitutive equation for the elastic part, and E is the elastic modulus.
Concerning the inelastic part of (1), constitutive equations for ein, typically, are given
in rate form accompanied by a set of equations for nq internal -nonmeasurable -

variables q E JR?'

| £= £ (o-, q, 0 in, ... ; K) (
* q (o- q, 0, _ins ... ; K)

Here, additionally, we defined the temperature 0, andK ME 1Rm is a vector of m material
parameters.

There exist a great variety of constitutive relations in the literature according to the
above skeletal structure (3) (see e.g. Miller [1987], Lemaitre and Chaboche [1990] and
references therein). Many approaches intend to provide for a number of different
characteristic effects, such as strain rate dependent plastic flow, creep or stress relax-
ation. In doing so a yield criterion with the inherent specification of loading and
unloading conditions as in time-independent classical plasticity is not needed. The
resulting equations are currently referred to as "unified models". The internal variables,
in principle, are argued for macroscopic or microscopic reasons depending on the
basic conception.
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Three representative examples of (3) are considered in this paper: the models of
Chaboche [1977], Bodner and Partom [1975] and Steck [1985] (see also Kublik and
Steck [1992]). The specific formulations of the three models are summarized in Table 1.

It can be seen that the Chaboche model has nq = 2 internal variables, which may be
viewed as the minimum for cyclic loading (Swearengen & Holbrook [1985]). A yield surface
F is present in the model, such that for F < 0 elastic behaviour takes place. As a major
difference to constitutive laws in plasticity we may have F > 0, so that F can also be
viewed as an over-stress. The internal variable R accounts for isotropic hardening, and
the back-stress term a = a,, is incorporated to permit description of material response
to unloading, including the Bauschinger effect. Note, that both (stress-like) internal
variables, R and a, consist of a hardening term and a recovery term. The constitutive
equation for a may be viewed as a modification of the linear Prager [19491 rule.

The Bodner and Partom [1975] model involves one internal variable for isotropic
hardening. Note, that in Table I we cited the original formulation of Bodner and
Partom [1975]. In more recent works, e.g. Bodner [1987], it was slightly modified, e.g.
the factor (n' + I)ln' was left out. Bodner 11987] describes a mechanistic approach for
identification of the model. In this way the variable Do is fixed for a strain rate range.
From Bodner [1987], p. 286, it may be interpreted as the maximum value of strain
rate in shear, and its physical existence can be argued on the grounds of dislocation
theory. On this basis, values for the maximum value of Do are summarized in Table 2
as recommended by Bodner [1987]. The internal variable Z is related to the total

Table 1. Uniaxial formulation of three specific examples for constitutive equations. In Steck's model R is a
gas constant and U0 is the activation energy for self diffusion

Chaboche [1977]

tin = | sgn(a - a), if F > 0

else

A = b(q - R) tin dg(n) (isotropic hardening)
a = c(y - a sgn( t)) tn (kinematic hardening)
F = (a - a) sgn(o- - a) - R - k' (over-stress)
seven material parameters: K = [n', K, b, q, c, y, k']T
two internal variables: R, a

Bodner and Partom [1975]

tn = 2 Do exp I ' + 1 Z ]n(

2 = .9- (ZI -Z)a tin (isotropic hardening)

five material parameters: x = [Do, Z4 = Z(t = 0), Z1, n', Ml IT
one internal parameter: Z

Steck 11985]

tin A'c1 exp [-(I - 1 RO)x2 sinh(RO a)) Cexp ( G 

= i _ aUO -IF, (isotropic hardening)

seven material parameters: K = [A', AV, c1, C2, a, A, K ]T

one internal parameter: F
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Table 2. Values for Do of the Bodner and Partom model recommended by Bodner [1987]

&in <10 Il103 >103
Do [5- I I0 lo, lo 07

dislocation density. Note as a special feature of the model, that the initial value
ZO = Z (t = 0) is regarded as a material parameter.

The stochastic model due to Steck [1985] (see also Kublik & Steck [1992]) is based
on the observation that deformation can be described by a movement of dislocations.
Therefore, flow units are introduced representing, for example, dislocations or disloca-
tion packages. It is assumed that each flow unit is situated in a class of an internal
barrier energy formed by solute atoms, grain boundaries, dispersed particles or entan-
gled dislocations. If they step into a class of higher energy, this results in hardening; if
they step into a class of lower energy, recovery is attained. Each of these processes is
described by a transition probability. In the original model of Steck [1985] the flow
units are located in a discrete number of energy classes. In Kublik and Steck [1992] a
reduction of all classes of internal barrier-energy to one is proposed. The resulting
model is the stochastic mean-value model, with one internal variable F describing
isotropic hardening, which is correlated to the mean internal barrier energy. A modifi-
cation of the model to account for cyclic deformation is described in Schlums and
Steck [1992]. For parameter determination there is no mechanistic approach. In
Kublik [1992], a least-squares minimization technique is applied, whereby the result-
ing objective functional is minimized with a genetic algorithm.

Lastly, in order to formulate the complete initial value problem, we assume that
initial conditions

o-(t = 0) = o0, £in(t = 0) = oq(t = 0) =q4 (4)

are given.

11.2 The direct problem

Let us assume a prescribed temperature 0(t) and stress distribution o-(t), t E I in
a stress-controlled experiment. Let U be the solution space for the strain trajectory
c(.; K) of the above initial-value problem (1)-(4). Then, assuming given material
parameters K E JR"', along with the above initial-value problem (1)-(4), this character-
izes the direct problem for the strains as

K F- E(; K); J m -> U, (5)

which in general can be solved in a forward calculation.

II.3 The inverse problem

Let & denote an observation space, and let £- E U denote given data from experi-
ments. To account for the possibility that only incomplete data are available, we
introduce an observation operator Mnmapping the strain trajectory to points M£M(.; K)

in the observation space U (Banks & Kunisch [1989], p. 54). Then, the objective is to
solve the inverse problem
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I Find K: Mce(; K) = £ for given E (6)

in a backward calculation. It is well known that the above problem is ill-posed in the
sense of Hadamard [1923], since in general no solution exists. Therefore, the back-
ward calculation is replaced by an optimal approach strategy; that is, we consider the
parameter identification as an optimization problem:

f(K) := IIME(e; K) - ell2s -4 min (7)
K K ,,

Remarks
1. In practice observations are given at discrete times {tj},d c L Then, for the case

of one experiment, the observation space is I = IRndat, i.e. e = [TES ... , Edaj~ where
i = T(t), i = I ... , nda,. Furthermore, the observation operator is defined by 21(o; K)

[(K). .--- , £ndat(K)]T =: e(K), where Ej(K) = E(tr; K), i = 1, ... , nda,. Consequently, the dis-
crete least-squares analogue of the functional in problem (7) is written as

f(K) =24e(K) -_ l2 (8)

For the case of more than one experiment, e.g. at different temperatures, the above
functional has to be modified accordingly.

2. Let us comment on two different type of errors: For this purpose let E (t) t E I
denote the true state corresponding to a process with given distribution (oa(t), 0(t),

E L Then, even for a correct parameter K* the following situations may arise

* IM&(o) • £ due to measurement errors
* E (s) • 8(e; K*) due to model errors

3. In many situations, the problem (7), though well-posed, may lead to numerically
instable solutions, i.e. small variations of E may lead to large variations of the
parameters K. These difficulties are caused, e.g. if the material model has (too many)
parameters, which yield (almost) linearly dependencies within the model, or if the
experiment is inadequate in the sense that some parts of the model are not properly
"activated".

In some cases even nonuniqueness of the solution is possible: For example, consid-
ering the Steck model of Table 1, this occurs for the case of isothermal identification,
since then a dependence of three parameters is present (see Mahnken & Stein [1994a]).
Furthermore, considering the Chaboche model of Table 1, the evolution equations for
the isotropic hardening and the kinematic hardening qualitatively become identical for
monoton loading as long as oa > a, since sgn(tin) = I in this case. Then various combi-
nations of b, q and c, y, respectively, may lead to the same solution of the direct
problem. For the inverse problem it follows that an infinite number of solution exists;
i.e. the results are not unique. Consequently, at least cyclic loading is necessary in
order to activate the differences of both evolution equations of the model. In other
words, the input for the identification process has to be sufficiently rich such that the
output is persistent excited (Baumeister, private communication).

4. As a consequence of the above Remark 3 it is strongly recommended to study
the effect of perturbations of the experimental data on the parameters. This may indi-
cate possible instabilities of the identification process.
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5. A mathematical tool suitable for overcoming possible numerical instabilities is a
regularization of the functional in (8); this leads to the more general problem

f,(K) = 2JIB-(e(K)- _)112 + 2 ||B,(K - K)J -* mi. (9)

Here the matrices B8 a E fl?"' X IR"' and BA E BR' X B", the scalar y E RA+ and the a
priori parameters K Ea ]R are regularization parameters (Morozow [1984]; Baumeister
[1987]; Louis [1989]). Note that the first part of the functional in problem (9) is also
obtained when considering parameter identification based on statistical investigations
in the context of a maximum likelihood method, in order to account for measurement
errors. It is noteworthy that the r.h.s. of the functional is also related to the Bayesian
estimation (Bard [1974]; Pugachew [1984]). The above function provides the opportu-
nity to include physical interpretation of some parameters (obtained, for example, by
a mechanistic approach mentioned in Section I) into the optimization process, if nu-
merical instabilities occur. However, a systematic concept for determination of the
regularization parameters in the context of parameter identification for viscoplastic
material models so far is not available.

6. The representation above - and in the forthcoming sections - is based on
stress-controlled experiments. Of course, analogous arguments hold for the comple-
mentary tests, i.e. strain-controlled experiments, where experimental data are given for
stresses a(t), t E I. Furthermore, in an analogous way a combination of stress-
and strain-controlled experiments is treated. Note, that identical results for stress- and
strain-controlled experiments can only be obtained if the model at hand can represent
the real data without measurement errors, i.e. the model errors must also be zero. Of
course, these conditions are only necessary but not sufficient for a unique solution of
the corresponding inverse problem.

III. NUMERICAL SOLUTION OF THE DIRECT PROBLEM

II1.1 Time integration scheme

In this section we present a systematic approach for solution of the direct problem
(1-4). The resulting equations will be the point of departure for numerical solution of
the corresponding inverse problem in the next section.

We define N as the number of time steps At0 = tk - tk-l, k = 1, ..., N, to = 0, tv = T.
Using the second order midpoint-rule at each time step, we have the relations

"k = 4k-1 + Atktk-112 + Ak- 1 (10)

qk =k-1 + Atkq0 -11 2 , (1 1)

where we applied the notation

1/2: =£(1/2(o-A + o-k), l/2(qk-1 + qk), -..;K) (12)

-1 + -k), 1/2(qkl + q0), ... ;K) (13)

de l. =-(ar-((11
Akl.: = E (o t ak-l). (14)
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Since the state variables ek and qk are not known in advance, the following nonlinear
system of equations has to be solved at each time step:

gkI(Ek, qk) := - Ek- I - Atk-t)2 V-1 = 0 (15)

gk,2(Ek, qk) qk qk- - Atk-k-l 2 =0 (16)
Defining Gk: = [gkl, gk27f] and a vector of state variables Yk. = [8k, qJT]T (15) and (16)
may be summarized as

Gk (YJ) '0 (17)

In the sequel the relation (17) will be referred to as the state equation, describing the
state of the state variables Yk: = [8k, qkfT at each time state tk.

111.2 Solution strategy

For solution of problem (17) a Newton method is used according to the iteration
scheme

YU = yGI)- d,4Jf'G{' (18)

where of" is a step-length, determined in a line-search (see, for example, Dennis &
Schnabel [1983]; Luenberger [1984]), and

aG(Yk)

ayk Yk = k(19)

is the Jacobian of GJ(YJ). In cases of the Bodner and Partom model the result for Jk iS

given in Appendix A. On corresponding results for the stochastic model of Steck we
refer to Mahnken and Stein [1994b]. The results of the Chaboche model require some
lengthy algebra not reported in this paper.

Remark
For complementary tests of the above situation, i.e. strain-controlled experiments with
given distribution (e(t), 0(t), t e I), basically, the same procedure as described above
may be used, by defining Yk: = [ak, qTkg as the vector of (unknown) state variables at
each time step.

IV. NUMERICAL SOLUTION OF THE INVERSE PROBLEM

IV.I Discretizedformulation

For reasons of simplicity, in the sequel, we will assume that the discrete values for
time integration {tk}k=l c land for the experimental data {t7'P}It11 c I do coincide for
both the numerical values Ek = 

8 ( tk; K) and the observations Tk = 8(tJ, k =, ... , N.
The following considerations can be extended to more complex situations in a
straightforward manner.

As noted in Section 11.2, parameter identification is treated as minimizing some
objective functionalj(K) with respect to K. Additionally, the state equation (17) of the
direct problem has to be satisfied at each time step. Therefore, the following optimiza-
tion problem with constraints is formulated:
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f(K, {Y} k = 1) - min
KeY {Yk}k= I

Gk(Yk) = , k = 1, ..., N.

(20)

The unknowns of problem (20) are Yk, k = 1, ..., N, and Ki, i = 1, ..., m, i.e. the highly
nonlinear optimization problem (20) is characterized by its large dimension and many
constraints.

IV.2 Solution strategy

A very effective solution strategy to problem (20) is applied as follows:

* The material parameters K are regarded as independent variables

* The state variables are dependent variables, i.e. Yk = Y0(K), k = 1, ..., N.

The resulting optimization problem without constraints is now given by

f(K,{ YK)}k = I) -> minfiK, ~~~k E JR"'

where { Yk(K)}'' = I satisfies

Gk (K, Yk(K)) = O, k = 1, ..., N.

(21)

It can be seen that the above strategy reduces the dimension of the optimization
problem significantly to dim(K). However, it should be noted that the functions of
interest now depend on K both explicitly and implicitly.

As a practical consequence it follows that in an optimization process for the solu-
tion of problem (21) a complete analysis for the problems (21)2 has to be carried out
for any set of material parameters Kc), j = 1, 2, .... A schematic flow chart with a sim-
plified description is shown in Fig. 1. It can be seen that, basically, an outer loop for
iteration of the material parameters and an inner loop for iteration of the state vari-
ables Y(Ko)) are required.

Optimization algorithms for problem (21) can be classified into methods which use
only function values (e.g. a genetic algorithm, see Schwefel [1977]) and methods which
use function values and gradients (e.g. the SQP-method according to Schittkowski
[1981] or a projection algorithm due to Bertsekas [1982]). Since, in general, the first

kind of method is not efficient due to large number of function evaluations, the second
kind is used. Therefore, the gradient of the objective function has to be determined in
a sensitivity analysis.

IV.3 First-order sensitivity analysis

For ease of explanation we consider the least-squares functional
N

fAK) = -I (e_(K) -_ )2 (22)
2 k= I

without weighting factors. Clearly, the gradient is given by

N

V>(K) = X (E1(K) _ Tk) d-k(K) (23)
k = I dK
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k k l .I+ i
S~top

Fig. 1. Schematic flow chart for optimization strategy with outer and inner iteration loops.

and thus, basically, dek(K)/dK is required. As it will be shown below, a systematic
approach for its determination is contained in the calculation of dS'JK)/dK, where
Vk(K) = [ek(K), qk(K)IT, as introduced in Section III.I.

The point of departure is the state equation (17) of the direct problem (at the con-
verged state) at the kth time step. It will be regarded as an implicit function; however,
the set of arguments is extented by those quantities which depend on the material
parameters Kc

pk (K, Yk(K), 'k I(n)) = 0. (24)

For this expression the total differential is given by

d~k - a +k +k =k ark0, (25)
dK aK 3•k dK 3M< dK

and the unknown quantities are obtained by solution of the following linear system of
equations:

duS =_ 1 1 aGk ± 30k dyk tI
dK I aK 3A - I AK

2 3 4/

(26)

From the above expression it can be seen that partial derivatives of the state equation
(24) with respect to K, •7k, Yk-, are required. Concerning terms 1-4, the following
remarks are noteworthy:

Term 1: This term is identical to the Jacobian Jk defined in (19).
Term 2: For this term the partial derivatives of the function Gk with respect to the

material parameters K are required.
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Term 3: Note the simple relation

a_____ e, __ _ _ 21, (27)

which holds if the midpoint rule is applied for integration of the direct problem.
Term 4: This term is adopted from the previous time step. Thus it can be seen, that

the sensitivity essentially yields a recursion formula for dik/dK. It is not
necessary to take into account results from time steps before the previous
time step.

Further Remarks
1. As mentioned before, partial differentials of the function Gk with respect to the

variables K, Yk, Yk-1 have to be provided. In the case of the Bodner and Partom model
of Table 1, the results are given in Appendix A. For the stochastic model of Steck we
refer to Mahnken and Stein [1994b]. The analysis for the Chaboche model involves
some extensive algebra not reported in this paper.

2. The fact that the sensitivity analysis yields a recursion formula can be
exploited in the numerical computation, when solving the direct problem. To this end,
the gradient is calculated simultaneously to the step-by-step computation of the direct
problem. In doing so an update of both the state variables Yk(K) and its derivatives
dSk0(K)/dK becomes necessary at the converged state of each time step (see Fig. 1).
Thus, we avoid storing results for dXk(K)/dK at all time steps.

IV.4 Second-order sensitivity analysis

As in the previous section, the point of departure will be the least-squares function
(22). Then, the Hessian off(K) is derived by differentiation of (23) with respect to K, i.e.

F :=-V~v(K) = X ( dk(K) dE0(K) + (E (K)-E d 2k(K)
:=V'ftK) ( (28__ )0 K

-~~ dK ~ dK dK (3dK)(8
From the above equation it can be seen, that basically d

2
ek(K)IdK ® dK is required. In

Appendix B we show that, conceptionally, the derivation of this term is similar to the
derivation of dsk/dK described in the previous section. For this purpose we use (25) as
an implicit function and calculate the total differential d26k/d®2)dK. Then, the result-
ing system of equations is solved for

d2
tk(K) d [dek(K) dqk(K) (29)

dK 3dK 1dKAdK dK dK I

Let us make some remarks concerning the Hessian of f(K):
1. Contrary to different applications (e.g. for solution of the direct problem) our

own numerical tests showed no advantage of the Hessian as an iteration matrix,
unless the starting vector K= " was near the solution vector K*. This is mainly because
F is not necessarily positive definite during the iteration process.

2. The Hessian F* at the solution point K* may be viewed as another indicator for
the robustness of the solution vector K*, along with the study of perturbation effects
proposed in Section 11.3. If F* is singular (or nearly singular), it may be concluded
that, as mentioned before, the material parameters are (almost) linearly dependent or
the experiment is inadequate.
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3. In the subsequent sections, frequently, the first part of the r.h.s of (28) shall be
called the Gauss-Newton matrix, i.e.

N : d/ Acf) dEk(K)(
FGN := Y.~ 0 dK(30)

It follows, that for zero error (Ek(K*) - _t) = 0, k = 1, ..., N, the matrix FGN is identical
to the Hessian F, while with increasing error also the deviations of both matrices
become larger.

V. SOME REMARKS ON DESCENT OPTIMIZATION ALGORITHMS

The iteration scheme of a gradient-based method for solution of the optimization
problem (21) reads

KU+ ) = K i)-au ct'[H(']- VfK(j)). (31)

Here a(r is a step-length determined in a line search, which may be based on function
evaluations (e.g. Armijo line-search - see, for example, Dennis & Schnabel [1983]
and Luenberger [1984]) or gradient evaluations (e.g. pegasus method - see, for example,
Engeln-Muillges & Reuter [1988]). The iteration matrix HW is a positive-definite
iteration matrix. The following choices seem to be preferable:

H = F.N (Gauss-Newton method)
[lH]' = HBFGS (BFGS method). (32)

For the specific update formula for HBFOS, we refer to Dennis and Schnabel [1983] and
to the modification of Powell [1977] in order to preserve positive-definiteness (see also
Luenberger, p. 448). It is noteworthy that we did numerical tests with the gradient
method, i.e. l = I"wjn, where I'"" is the identity; however, this choice gave very poor
results with respect to execution time.

Remarks
1. For many problems, lower bounds V>, i 1,...,m, are given for the material

parameters. Thus, the resulting optimization problem reads

f(K) -* min
KE A" (33)

Ki > K, i .

Problems of the above kind may be solved with a projection algorithm of Bertsekas
[1982] according to the iteration scheme

KUa + ) = P gKW )- aX)H~j) VJ(K(j))). (34)

The projection operator P in (34) is defined as

(P {IK})i = max (K;, KI) i M, ... , m. (35)

For the choice of the iteration matrix H we refer to Bertsekas [1982] and Mahnken
[1992]. Note, that upper bounds Ki<, i = 1,..., m, may be treated in an analogous manner.

2. During the iteration process it may occur that the iteration matrix H is not posi-
tive-definite or ill-conditioned, thus preventing an adequate descent direction for the
iteration process. In this case a modified Cholesky method due to Gill et aLu [1981]
may be applied; this yields an iteration matrix

462



Parameter identification for viscoplastic models

1A= H + E. (36)

Here, the diagonal matrix E is chosen, such that 1A becomes positive-definite.
Alternatively, a spectral decomposition of H may be computed such that

H = QTD Q. (37)

Here D is a diagonal matrix with eigenvalues of H, and Q is an orthonormal matrix con-
taining eigenvectors of H (see, for example, Engeln-Mtillges & Reuter [1988]). Note
that the evaluation of the eigensystem is not expensive since, in general, the dimension
for K is low. Then, if H is not positive-definite, it is replaced by

AI= QTfiQ, (38)

where diag[l]i = max(E, diag[D11), i = 1, ..., in, and £ is some tolerance (for example,
E = 10"lo), see Gill et al. [1981].

3. For H = FGN and E = AJ, pu > 0 in (36), the resulting algorithm is known as the
Levenberg-Marquardt method (Luenberger [1984], p. 227; see also Dennis & Schnabel
[1983], p. 227).

4. In the case of the BFGS algorithm, scaling plays an important role for condition-
ing of the iteration matrix (see, for example, Luenberger [1984], p. 275). In our algo-
rithm, scaling was realized according to

f(K )-min, : i i = 1= 1..., in. (39)

where K, denotes the scaling parameters and K is a modified variable. It follows by the
chain rule that the corresponding gradient has to modified according to

df df dK i df

d Wj dK i dk - dK, (40)

In our algorithm the starting vector 0 = ') is used for scaling. Additionally, a resealing
and a subsequent restart of the optimization process is preferable in the case of
min{IKJc} > stol max {lKiI}, where stol is some tolerance factor. In this case, the actual
parameter set x) is used as the scaling vector.

VI. NUMERICAL EXAMPLES

The model's equations of Table I have been incorporated into a computer program
called PARAGRA V(PARAmeter Identifikation mit Gradienten Verfahren). The basic
flow chart of the program is according to Fig. 1, where either stress- or strain-
controlled tests may be simulated. To account for possible stiffness of the ordinary
equations, as mentioned before, a second-order midpoint rule is applied for integra-
tion. Optimization for the inverse problem can be performed with (1) a projection
algorithm due to Bertsekas [1992]; (2) an SQP algorithm due to Schittkowski [1981];
(3) a one-level genetic algorithm due to Rechenberg (see Schwefel [1977]); or (4) a
multilevel genetic algorithm due to Schwefel [1977].

In the subsequent sections numerical results are performed in the context of mono-
tonic and cyclic uniaxial tension and compression tests. Optimization is performed
with the multilevel genetic strategy and the Bertsekas algorithm. For the first method
we used 3 parents and 20 descendants, while for the latter the BFGS matrix was used
as an iteration matrix and the Gauss-Newton matrix (30) for preconditioning. The
computer runs were performed on an IBM-250T.
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VI. I Stability investigations for the inverse problem in case of the CHABOCHE model
for monotonic and cyclic loading

The goal of the simulations in this section is to assess the stability of parameter sets
for the Chaboche model of Table I for the case of both monotonic and cyclic loading
in a simulated experiment. For this purpose data for the stresses were generated for
both cases based on strain-controlled experiments, with assumed parameters listed in
the second column of Table 3. (Note, that no units are given for this purely numerical
experiment.) The total time was T = 100 for monotonic loading, and T = 1000 was
chosen in the second experiment, where we considered 10 cyclic loads. The time steps
for both cases were chosen to be tkc-tkl = 1. The strain-controlled loading and the
resulting curves for the stresses are shown in Figs 2 and 3, respectively.

As an objective function for the associated inverse problem in both cases the simple
least-squares function "dat

f(K) 2 (aidt(K) - didat) (41)
idat=I

is considered, where nda, = N = 100 for the case of monotonic loading and ndat = N
1000 for the case of cyclic loading.

First, we want to verify Remark 3 of Section 111.3 for the Chaboche case of monotonic
loading. For this purpose, parameters of the third column of Table 3 are used for solution

Table 3. Assumed parameters for the Chaboche model. Note that all columns of parameter sets yield
identical results for monotonic loading as shown in Fig. 2

n0 5 1 51 51
K 70 70 70
b 02 04 10
q 60 40 10
c 0*4 02 1 2666E-4
y 40 60 14229 74
k' 0 0 0

20

tS)
15

1 0

Time

Fig. 2. Simulated data for the Chaboche model for monotonic loading.
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50

t

0 200 400 600 800 1000

Time

Fig. 3. Simulated data for the Chaboche model for cyclic loading.

of a direct problem. Note, that here the parameters b, c and q, y of the second column
have been interchanged. Then a solution of the corresponding direct problem with
monotonic loading yields an identical response for the stresses as shown in Fig.2 as
the parameters listed in the second column of Table 3. Further numerical tests (not
reported here) based on minimizing the least-squares functional (41) showed that an
infinite number of parameter sets can be generated, which give the same response for the
stresses; for example, the fourth column of Table 4 also yields the results shown in Fig. 2.

The implications of the above linear dependencies within the direct problem for the
numerical stability of the inverse problem become obvious by inspecting the eigen-
values and the eigenvectors of the Hessian of the least-squares functional (41). The
eigenvalues are listed in the first column of Table 4. It can be observed that two
values are close to zero, thus reflecting the appearance of two extra degrees of freedom
for the parameter set and demonstrating the instable behaviour for solutions of prob-
lem (41) for the case of monotonic loading. In Table 5 the corresponding eigenvectors

Table 4. Eigenvalues for the Hessian of the least-squares functional in the case of parameters for the
Chaboche model of the second column in Table 3

Monotonic loading Cyclic loading

1 4535 +03 6 5608E +05
5 2677E +01 2 6746E+03
1 7936E -02 6 6404E +02
I 1115E -04 1 7299E-01

16150E -05 2 7647E-03
1.4201E -15 6 7722E-03
26768E -20 1 6326E-05
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Table 5. Eigenvectors for the Hessian of the least-squares function in case of parameters for the Chaboche
model of the second column in Table 3 and monotonic loading

n, 8 999E-01 -3 784E-01 -1810E-01 -1016E-01 6-289E-02 7418E-07 -3 762E-10
K 4 718E-02 -1344E-02 -3-515E-0l 7 407E-01 -5 704E-01 -7685E-06 4 015E-09
b 215 1E-O 5 065E-01 -3 468E-02 4*957E-01 6.710E-01 2*OOSE-03 -1565E-03
q 2 168E-03 5 126E-03 2 655E-04 -2-204E-03 -2-976E-03 6-255E-01 7.798E-01
c 3 251E-01 7-689E-01 3 958E-02 -3 274E-01 -4,407E-01 -8 109E-03 -2 069E-03
y 1l088E-03 2*579E-03 2866E-04 -2-903E-03 -3 928E-03 7,802E-01 -6G260E-01
k' 1 898E-01 -9*390E-02 9,170E-01 2 967E-01 -1618E-01 -I 740E-06 8,642E-10

are listed. Inspection of the the sixth and seventh eigenvector, which form the (near-)
null space of the Hessian, reveals, that basically the four parameters b, q, c, y are
responsible for the linear dependencies. This observation is in agreement with the
results of Fig. 2, which are obtained with parameter sets according to Table 3.

In the third column of Table 4 the eigenvalues of the Hessian of the least-squares
functional (41) corresponding to the simulation based on cyclic loading as shown in
Fig. 3 are listed. As expected, now none of the eigenvalues is close to zero, thus indi-
cating stability for solutions of the inverse problem.

VI.2 Monotonic loading for High-Purity Aluminum Al 99.999

The next example concerns parameter identification of the Bodner and Partom
model of Table I in the case of high-purity aluminum Al 99.999. For this material,
experimental data are available from Mecking [1989] for creep tests at several stress
levels and at temperatures between 550 K and 700 K. The following results are con-
cerned with the case at 550 K.

First, identification is based on the simple least-squares functional (8). Two com-
puter runs were started using the Bertsekas algorithm with different starting vectors,
as shown in Table 6. Additionally a genetic algorithm was used. From Table 6 it can
be seen that the results obtained by the Bertsekas algorithm are identical. They differ
from those obtained by using the genetic algorithm, which has a greater value for the
objective functionj(K). Note, that the Bertsekas algorithm discovered the value for Do
in the expected range of Table 2 as proposed by Bodner [1987], which is not the case
for the genetic algorithm. Furthermore, in Table 6 we compare the number of func-

Table 6. Starting and obtained values for the material parameters of the Bodner and Partom model
for three different optimization runs. ITE and NFUNC denote the number of iterations and function

evaluations, respectively

Bertsekas, run I Bertsekas, run 2 Genetic algorithm

Starting Solution Starting Solution Starting Solution

Do (l/s) 1 0 E-l 5 325 E+4 1 0 E+5 5 327 E+4 1-0 E-l 7 890 E-l
Z0 (MPa) 1-0 E+2 1,857 E+3 1B0 E+5 1 857 E+3 1 0 E+2 1 0 E+2
Z, (MPa) 1 0 E+2 3Y974 E+3 1 0 E+5 3 974 E+3 1-0 E+2 1-249 E+2
n 50 E-l 1270 E-l 5-0 E-2 1270 E-l 5-0 E-1 2720 E-l
in' 1 0 E+2 7-292 E+3 1 0 E+5 7 293 E+3 1 0 E+2 1-216 E+2

fi() 5 580 E+l 8-917 E-2 5 620 E+1 8 917 E-2 5 580 E+1 1 260 E-l
CPU [min] 32 30 1380
ITE (NFUNC) 731(1058) 602(1065) 3003(42211)
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tion evaluations and the CPU time for the Bertsekas algorithm and the genetic algo-
rithm. The great advantage of a gradient-based method is obvious.

In Fig. 4 it can be seen that the results of the simulation correspond well to the
experimental data. However, these appearances are deceptive with regard to the
stability. When considering the smallest eigenvalue of the Hessian F* at the solution
point, a value of 3.86 X 10='4 is obtained, thus indicating unstable results. This unrelia-
bility is also demonstrated when using perturbed data. In the third column of Table 7,
results for the parameter set are reported in the case of a stochastic perturbation with
a maximal value of 10% of each data e,, i = 1, ..., nd,1. A partially large deviation from
the second column of Table 7 (which is recalled from Table 6) can be seen from this.

For this reason the numerical experiment is repeated with the regularized functional
(9); that is, we combine the data information of Mecking [1989] and the model infor-
mation of Bodner [1987] according to Table 2. The corresponding regularization

0.5

0.4

0.3

02

0.1

0.0
0 1 OOO0 20000 30000 40000

t [sec]

Fig. 4. Strains versus time for experimental data and Bodner and Partom simulated data for high-purity
aluminum 99.9999. The stresses are given in MPa.

Table 7. Effect of perturbation of experimental data on solutions of parameter sets associated with a non-
regularized and regularized least-squares functional. The second column is recalled from Table 6

Perturbed No Yes No Yes
Regularized No No Yes Yes

Do (1/s) 5 325 E+4 1 474 E+5 1 001 E+4 1 001 E+4
Z0 (MPa) 1 857 E+3 2 558 E+3 1 125 E+3 1 135 E+3
Z, (MPa) 3 974 E+3 5 468 E+3 2 352 E+3 2 351 E+3
n' 1 270 E-l 1 211 E-l 1 381 E-l 1,381 E-l
m' 7 292 E+3 1 005 E+4 4 324 E+3 4 323 E+3

fgK) 88917 E-2 ---- 2-937 E-l 8 995 E-2 2 941 E-l
f,,(K) - - - 5 991 E-4 5 992 E-4
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parameters are as follows: for B, the unity matrix is used; for B. a diagonal matrix is
chosen with elements 1.0; 0. 1; ; for K we used values of the second column
in Table 7 except for K -=10; lastly, we set y = 10' for the total regularization term.
The result of the minimization process is given in the fourth column of Table 7, with
corresponding smallest eigenvalue of 9.54 x 10'9. Note that the value for the least-
squares functional is very close to that obtained in the second column. Let us mention
that the same results were also obtained for different, arbitrary chosen, starting vec-
tors. Next, the data are perturbed as described above, which gives the parameters
listed in the fifth column of Table 7. These results with regularization indicate a
greater robustness of the parameters with respect to perturbations.

To summarize, in an identification process for parameters of the Bodner and
Partom model an a priori estimate for the parameter Do becomes necessary. This may
be included as weighted model information into the basic least-squares functional.
Alternatively, the value may also be kept constant during the identification process.

VI.3 Monotonic loading at different temperatures for High-Purity Aluminum Al 99.999

The next example is concerned with the same material as in the previous example;
that is, high purity aluminum Al 99.999 is considered, based on experimental data
from Mecking [1989]. Identification is performed for the Steck model of Table 1. In
Mahnken and Stein [1994a] it was shown that in case of isothermal identification, a
dependence of three parameters occurs. Thus, in order to identify the parameters
without instabilities it is necessary to use data based on different temperature experi-
ments. In our example, temperature will rise from 550 K to 650 K.

In the sequel, we make use of the relation ci = lnc, i = 1, 2 for the parameters of
Table 1, which can be viewed as a scaling procedure. The activation energy is U0 =
149 kJ/mol, the gas constant is R = 8.315 X 10' kJ/(molK), and the elasticity modu-
lus is E = 1700 MPa.

As in the previous example, the least-squares functional (8) is minimized with the
Bertsekas algorithm and the genetic algorithm. In columns 3 and 5 of Table 8 the
results of both optimization strategies are compared for the same starting values. It can
be seen that the deviations at the solution point are drastic; however, the value for the
objective function of the Bertsekas algorithm is lower. Furthermore, the execution
time for the Bertsekas algorithm is much lower. Another run is performed with the
Bertsekas algorithm (Run 2), where the solution vector obtained by the genetic algo-
rithm is used as a starting vector. Then, in a comparatively short time (26 min), the same
solution (column 7) as in Run 1 (column 3) is obtained. Let us note, that the minimal
eigenvalue of the Hessian at the solution point is 3.33 x 10 , thus indicating stable results.
The same conclusion can be drawn from the last column, which shows results from an
optimization process based on 10% perturbed data (Run 3), and which show no drastic
deviations from those of Run I or Run 2, respectively. Figure 5 depicts the strains for
experiment and numerical simulation corresponding to Run I and Run 2, respectively.

VI.4 Cyclic loading for AlMg

In this example parameters for the Chaboche model of Table I are determined in
the case of an aluminumlmagnesium alloy. The underlying experimental data were
obtained by Lange [1993]. The experiments were performed at room temperature for

468



Parameter identification for viscoplastic models

- _ _ 7 + +o +
o C\ Ca 0 ot ca

-0 oo cc co ONON 0 ON 'I. ON r

I+ + + + +IT +
oo oo oo o

9999999cI =1c?1;
m- N-mO

In

;IQ

co

Ca,
x0

_ +__ +++

c 000- 0I_ ,,,

I1.L ID 02

- _ - _ O - oN Ca,

0-C
1; _? 1; C o b

m OO00O0rq t - cc>- ,o+o - oN-O C

o oooo

_ _ ~ _ .- 

E
e ~ -. ~

469

r:
a
aa

S
a

i3-0e

!2

,;
a

§ Cn
a

ct

.°

1G ,;

cc

V:

a
0

Cn

CcI

DO

a0
Cca
Cc

aa
U
aa
-aa

a0
Cc
U

0
U

aa
U

U
0a
U

t.)
z

z
a
Cc

tL�

Ut .�

U
U
cc
U

0

U

Cc
Cc
a.
Cc

U

U

a

Ua
cc

-a
a
Cc

a
-a
a
ca
a

cc
cc
U
-a
I-

'O N

SCa °

C,

'O "

.ON

Ca-
ON

C-.

cs1
ON0'

C La,

0-C

C-C

0C,

0C -

z

z
at

CCea~a

Cc

.c

d



R. Mahnken and E. Stein
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Fig. 5. Strains versus time for experimental data and Steck simulated data for high-purity aluminum 99.9999.

cylindrical hollow specimens with an outer radius of 28 mm and a thickness of 2 mm.
The specimens were subjected to a periodic strain of an amplitude of anax = 0.3% at a
strain rate of t = 0.2% s-'. A total of 110 cycles were generated during the test; how-
ever, experimental data are available only for 20 cycles. For Young's modulus we set
E = 1.09 X 105 MPa in the subsequent simulations.

As an objective function for the inverse problem the simple least-squares functional

ftK) = I || a (K)- 112(42)

is minimized, which is the analogue of (8) for the case of strain-controlled experi-
ments. Note that due to the incompleteness of the data set, Ch contains data only at 20
cycles out of the total of 110. Again, minimization was performed with the Bertsekas
algorithm and the genetic algorithm.

The starting vector and the solution vectors are given in Table 9. Concerning the
Bertsekas algorithm three different runs were made. Run I and Run 2 were started
with the vector in the second column; however, for Run 2 a regularization was per-
formed analogously to (9). Here, for B8 and for BA the unity matrix is chosen, R' =
K 

0
=

0
) and we set y = 105. It can be seen that no convergence was attained for Run 1

after 2000 iteration steps, while minimization with the regularized functional attained
convergence after 201 steps. The corresponding minimal eigenvalue of the Hessian at
the solution point is 7.62 X 10-2, which indicates stable results. This is also confirmed
by Run 3, where each data was perturbed stochastically with a maximal value of 10%.
(For this run no regularization was used, and the solution vector of Run 2 was used
as a starting vector.) It can be seen that the effect of the perturbation is negligible.

In the last two columns of Table 9 results for the genetic algorithm are shown. It
can be seen that after 897 iterations the results are still poor (Run 4). After 10256
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Table 9. Starting and obtained values for the material parameters of the Chaboche model for AlMg in the
case of different optimization strategies and least-squares functions. Concerning Run 3, see text. ITE and

NFUNC denote the number of iterations and function evaluations, respectively

Bertsekas Genetic algorithm

Start Run I Run 2 Run 3 Run 4 Run 5

n' 5 0 E+0 4 582 E+0 1 360 E+1 1 360 E+l 4 971 E+0 1 250 E+-l
K (MPa) 1 0 E+2 2 344 E+2 4 242 E+l 4 242 E+1 1 972 E+2 3 896 E+l
b' 1 0 E+2 5.195 E+0 4 824 E+0 4 824 E+0 5 115 E+0 5 068 E+0
q (MPa) 1 0 E+2 6 233 E+l 6 827 E+ l 6 827 E+l 6.488 E+l 6 697 E+-l
c 1 0 E+2 0 206 E-l 1 542 E+3 1 542 E+3 1 173 E+2 1 546 E+3
,y (MPa) 1 0 E+2 9 840 E+4 4 719 E+l 4 719 E+-l 1 792 E+2 4 736 E+1
k' (MPa) 1.0 E+l 0 000 E+0 0 000 E+0 0 000 E+0 8 543 E-l 2 238 EO

flK) 3 491 E+5 9 620 E+3 2.135 E+3 3 335 Et3 8 936 E+3 2 135 E+3
f (K) - - 3 582 E-5 -
6U (min) - 192 24 - 1440 605 10-
ITE (NFUNC) - 2000(2072) 201(250) - 897(17752) 10256(204932)
Remark - No convergence Regularized Perturbed -

iterations and 168 h the value for the objective function is still above that obtained by
the Bertsekas algorithm (Run 2) in 24 min.

In Fig. 6 the curves for the stresses of the simulated data for the starting parameter
set Kj=° and the solution set K* for the first 18 out of 110 cycles are shown, and they
are compared with the experimental data at 9 out of 20 cycles, where data are avail-
able. Figure 7 depicts the stresses versus strains for three different cycles for the solu-
tion vector of the material parameters. It can be seen that a very substantial
agreement of experimental and simulated data is obtained, except for the first cycle
where the model is not able to simulate the horizontal plateau. This explains the rela-
tively high model error for the values of the objective function at the solution point in
Table 9.

VII. SUMMARY AND CONCLUDING REMARKS

In this paper a unified strategy for parameter identification of viscoplastic models
based on different conceptions is presented by minimizing a least-squares functional
with gradient-based optimization methods. For this purpose the associative gradient is
obtained analytically, and as a main result a recursion formula is obtained. For the
computation it follows that the gradient can be determined simultaneously to the step-
by-step computation of the direct problem. Comparative results with a genetic algo-
rithm with respect to execution time clearly demonstrate the efficiency of our strategy.
Furthermore, in an optimization run for the Chaboche model with an inadequate
starting guess it was shown that convergence for the Bertsekas algorithm can be accel-
erated with comparatively small regularization.

Another conclusion is concerned with the numerical stability of the obtained param-
eters. As shown in an example for the Bodner and Partom model, good agreement
between experimental data and simulated data is no indication for stability. Small per-
turbations of the data may lead to large deviations of the results. For this purpose the
Hessian of the least-squares functional at the solution point is determined, and then
an eigenvalue analysis yields information about the robustness of the results.
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Fig. 6. Stresses versus time for the starting parameter set and the solution parameter set for the first 18 out
of 110 cycles. Note the incompleteness of the experimental data set.

The cause of possible numerical instabilities may be twofold: first, the constitutive
equations may have (too many) parameters, which yield (almost) linear dependencies
within the model; secondly, the experiment may be inadequate in the sense that physi-
cal effects intended by the model are not properly activated. Consequently, if numeri-
cal instabilities are detected, the model and/or the experiment have to be revised.
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Fig. 7. Stresses versus strains for three different cycles. The numbers 1, 30 and 110 correspond to the specific
cycles.

In particular, when identifying parameters for the three representative models of
Table I at least the following guidelines are recommended, in order to achieve stability
for the results of the inverse problem. For the Chaboche model at least cyclic experi-
ments are necessary. Otherwise, in the case of monotonic loading, the identical struc-
ture for the linear and the kinematic hardening variable yields two extra degrees of
freedom for the parameter set. For the Bodner and Partom model an a priori estimate
for the parameter Do becomes necessary. This value is kept constant during the
identification process or it may be included as weighted model information into the
basic least-squares functional. Concerning the Steck model, we recall as a result from
Mahnken and Stein [1994a], that the experiments have to be performed at different
temperatures.

Let us make some remarks related to issues of future work in the field of parameter
identification:

1. When using a deterministic optimization strategy based on gradient evaluations,
it is not guaranteed that the global minimum of the problem is obtained. In our tests
we tried several starting vectors and always obtained the same solution. However, a
more systematic approach would be to use a hybrid method: that is, a combination of
a deterministic and a stochastic strategy.

2. As mentioned before, numerical instabilities for the inverse problem can also be
circumvented by using a regularized version of the basic least-squares function. In this
respect the basic least-squares functional is enhanced by model information obtained
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for example, by a mechanistic identification approach or by physical interpretation of
some parameters. However, an extensive study on an optimal choice strategy for the
regularization parameters is still open.

3. The effect of discretization errors (for example, in the context of a midpoint rule
for time integration) on solution for the material parameters was not discussed in this
paper. We still work on strategies in order to include adaptive procedures for the
time-step selection in the context of the optimization procedure.
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APPENDIX A: PARTIAL DERIVATIVES OF THE STATE EQUATIONS IN
CASE OF THE BODNER AND PARTOM MODEL

It is the object of Appendix A to evaluate the partial derivatives of the state equation
(17) for the Bodner and Partom model of Table 1. The following results are related to
stress-controlled experiments. The extension to strain-controlled experiments is
straightforward.

The vector of material parameters (in = 5) is defined as

K := [Do, Z0, Z1, n', mr]T (A.l)

(A.1.) Implicit function

The implicit functions according to (15)-(16) are defined as

gk l = 8k-Ek~l - ik - -k1 (A.2)

gk,2 Zk Zk-l AZk (A.3)

where

whelr 2 AtkDoexp[ 2n ' 1 k ] (A.4)

AZk := ko-12 m (Z1 - Zkt12 )AEke (A.5)
zo

Uk_112 2 ((Uk + Uk-1) (A.6)
2
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Zk-=/2 -(Zk + Zk-1) (A.7)
2

(A.2.) Jacobian

The elements of the Jacobian (19) are given by

Jkl g k = -= 1 (A.8)
a~k

Jk,2 1 =gk, = _ aAk (A.9)
a Zk a Zk

=, 2 = agk2 0 (A. I 0)a 4

-=g, = I AZk (A. 1)

where

aina _k = 0 (A.12)

DAE in+ I)ZkI1,2 I
a = A D£An(n' + I) Zk al2 2Z 1 (A.13)

DAZk 0 (A.14)
ack

aAZk AZk aAet A in k2m (A.15)
DZk A4-k aZk -YZ

Consequently the inverse of Jk is

Jk,12

Jk = 0 422*(A. 1 6)0~t
L k422

(A.3.) Derivatives with respect to the material parameters

The derivatives for gk,j are given by

ak, ak z1,', ..., 5 (A.17)
where

aAEk-. AE' (A.18)
aKi Do
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aA _kn = 0, i = 2, 3, 5 (A.19)aj

-=n Zk,12 [( 2,2 lo g21 I 2 )2 (A.20)

whereas for gk,2 we have

_ag,2i - 1,Zk , 5 (A.21)
a ja K

where

aAZk - AZk aA E, i 1, 4 (A.22)
ai Kj _ki a Kj

kAZ - _ Azk (A.23)
aK2 Z°

a AZk - Uk-1/2m' (A.24)
aK3 ZO

a~zk = Azk == (A.25)
aK5K m 

Since the initial value Z(t = 0) = ZO is regarded as a material parameter, additionally
for the first step we need

_k=_ = a (Z _ ZoAZk=l) I -1 (A.26)
aK2 azO aK2

Since

AXZAk=t 0k-1/2M' r Z1 (ZkIl + Z0 ) Ae,,n

z0 ( 2 )

it follows that

aAZk_, 1 o-1/2m 'Zk=l @Aek=l (A.27)
azo 2 Zo AEk=1 aZO

Here we make the use of the relation

a~Z _ aAZkI= - Jk=1.t2 (A.28)
azo aZk=,

The above relations are used in order to evaluate the recursion formula (26).

APPENDIX B: ON DETERMINATION OF THE HESSIAN OF THE LEAST-
SQUARES FUNCTIONAL

It is the purpose of Appendix B to present a unified strategy for determination of the
second derivative of the least-squares functional. As it will be seen, third-order matrices
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will appear during the calculation. For this reason we will apply an index notation,
contrary to the representation of Section IV.3 for the first derivative. Furthermore,
contrary to the previous notation, we will use k as an upper index, which corresponds
to the time step introduced in Section III.I. Using this notation, the sensitivity analy-
sis for the first derivative is also briefly recalled in the subsequent analysis.

Considering the following least-squares function

y
f(K) = -E ({ek)(K) _ ek))2 (B.1)

2 k=1

by use of the chain rule the gradient is given by

df(K) = Z (Elkl(K) _ ik)) dEtk)(K) (B.2)
DKj k=I dKi

and for the Hessian we have

d2f(K) - d(--d sk + (e(k)(K)- £(k)) d2 k)(K) , (3)
a Kja Kj k=1 k dKc dKj dKjdKi

where i, j = 1, ..., m. From (1.2) and (B.3) it can be seen, that basically dek) (K)/d Kc
and d2e(k(K)/dcKjdKi are required. For this purpose we will calculate d Yl/4 /dK; and
d Y/k)/dKdKj, where Ifk: = dk) y/k} = qb§, I = 2 ... , nf.

As in Section IV.3 the point of departure is the state equation, which is regarded as
an implicit function:

Gr = Gr(K, y(k1(K), y1k1)(K)), (B.4)

where r = 1, ..., nq + 1. In calculating the total differential

dG, _ r d aG dy/kl aG d, Yft'- =° (B.5)
dKx aK, aY,(/) dKj ay(kt11 dKi.

and introducing a matrix with elements D,,,r, which satisfy

a yl=k (B.6)

m = 1,..., nq + 1, we can solve for the unknowns

d ,(I=-D jGr + rG d y/~k- (.)7
dKie aKy ady/lk-I) dKi ) (B.7)

Next, a second total differential is introduced, where it has to be taken into account,
that aG/aK), aG3 ay/,k),y aGlY,-U) are dependent on K, yk)(K), Ylk-)(K). We obtain

dGic . a - r + D2Gr d ylk) + a2Gr d yk-)
dKjdKi aKjaKi K, day/k)a dK1 ay/4k-1)aK, die1

+ ( a2Gr + d2 Gr dY",?k1
+ d2 G, dywk -..) dylk)

aK 1ay/k by,,)ay/k) die. 3yrk) )y/k dKj ) die.

+ ad Gr d2 y 1k)

ay/k) dK; dKi
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+( a2Gr + a'Gr d Y (k) + a'G d Y,(, )+ r M ~+ rdY()

a cyllk-1) a+ "k dYk-1) 3G dk 1
dKj a Y,(k) a Yl) dij dKK

+ aGr d2Ylk-1 ) (B.8)
a ylk-I ) d KjdKi

According to (27), the following relation holds

-a ( aGr )= a ( aGr - 280 )= 82G (B.9)ax a aY-') a = X a ylk) � k axay/k''

and, consequently, it follows

dGr _ _2_Gr + aGr d2Ytk-1)

dKjdKi a Kja K; a yjk) dKjdKi

+ a2G r (dy/k) + d Yf-') + ___a2Gr d yI(k)+ d yl(k-1)

a kjaKj dyj dig ) al§( Kj dK, dKi

+ a2Gr C dYj + d ( dy/k) + dY +k 1 ) )ajra Ki) d Kj d Kj )dj j

ay yk) d KjdKi

Analogously to the determination of the first derivative, the above equation can be
solved for the unknowns:

d' Y., ,) _ D a2Gr + aGr d2 y(k-
1

dK~d, K a a KD Kj d yk- I) dKjdKi

+ a2Gr (dy/k) + d y/k- ) + A2 r (dyk) + dy/k))
a yjkaK tK d Kj dj a' aIKj dK; dKi )

+ a2
Gr d y(+) d yA(k-) d yfiL dyA-I)L (B. I 1)

a y,( I)a Yk)k dKj dij )k dK; dK1 ))

Remarks
* Equation (B.l 1) shows that analogously to the first derivative a recursion formula

is obtained.
o In order to solve (B.l l), additionally to the first derivative, one has to determine

a 2GIaKjdKiY, a2 Gla Yaa Yi,, D2G,/ a Ya,,. These terms have to be provided separately
for each material law, analogously as for the first derivative in Appendix A.


